Analytics Role

Jean-François Puget
@JFPuget
Big Data = All Data
Not just about large volume

Volume
Data at Scale
Terabytes to petabytes of data

Variety
Data in Many Forms
RDBMs, objects, free text, multimedia, sensors

Velocity
Data in Motion
Analysis of streaming data to enable decisions within fractions of a second.
Video, Social media feeds, Sensor feeds, etc

Veracity
Data Uncertainty
Managing the reliability and predictability of inherently imprecise data types.
Measured data, predicted data, etc.
Purpose of Big Data Analytics: Creates New Value from Actionable Insight

- New Mix of Data
- Broader Application
- New Buyers & Decision Types

Data Acquisition | Context | Analyze/Embed | Actionable Insights in the Business Moment

Data
- Traditional data warehouse, transactions, descriptive
- Distributed datamarts, spreadsheets

Big Data
- Unstructured notes, logs
- Social Media pulse, emerging issues
- Survey Research attitudes, opinions
- Sense-making
- Sensors

Data
- Volume
- Velocity
- Variety
- Veracity

Organize
- Model
- Simplify

Analytics

-Decisions
- "consumer oriented agile insight"

Action
- "in the business moment"

Differentiated analytic solutions
- people, process

LEARN

Plan Collaborate

Automation Embed
Actionable insights examples

<table>
<thead>
<tr>
<th>Data</th>
<th>Insight</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer name, address, past responses</td>
<td>Customer segment</td>
<td>Marketing campaigns</td>
</tr>
<tr>
<td>Customer service requests, customer transactions</td>
<td>Propensity to churn, customer value</td>
<td>Retention action decision</td>
</tr>
<tr>
<td>+ Twitter</td>
<td>Life Event detection</td>
<td>Targeted ads and offers</td>
</tr>
<tr>
<td>Twitter</td>
<td>Demonstration location</td>
<td>Police positioning</td>
</tr>
<tr>
<td>Weather forecast</td>
<td>Energy consumption forecasts</td>
<td>Energy production plan</td>
</tr>
<tr>
<td>Weather forecast</td>
<td>Outage prediction</td>
<td>Crew and resource dispatch</td>
</tr>
<tr>
<td>Weather forecast</td>
<td>Asthma risk score</td>
<td>Patient alerts, ER staffing</td>
</tr>
<tr>
<td>POS data</td>
<td>Category Sales performance</td>
<td>Pricing actions</td>
</tr>
<tr>
<td>POS data + Weather history</td>
<td>Weather adjusted sales performance</td>
<td>Inventory repositioning</td>
</tr>
<tr>
<td>Weather history + Ag yield</td>
<td>Variability and Correlation</td>
<td>Price Crop Insurance</td>
</tr>
<tr>
<td>Equipment sensor data + weather</td>
<td>Failure prediction</td>
<td>Maintenance schedule</td>
</tr>
<tr>
<td>Weather history + Ag yield</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Purpose of Big Data Analytics: Creates New Value from Actionable Insight

New Mix of Data / Broader Application / New Buyers & Decision Types

<table>
<thead>
<tr>
<th>Data Acquisition</th>
<th>Context</th>
<th>Analyze/Embed</th>
<th>Actionable Insights in the Business Moment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traditional data warehouse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organize</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DESCIIONS</td>
<td></td>
<td></td>
<td>consumer oriented agile insight</td>
</tr>
<tr>
<td>"moment of decision"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human Input</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Descriptive Analytics
What has happened?

Diagnostic Analytics
Why did it happen?

Predictive Analytics
What will happen?

Prescriptive Analytics
How can we make it happen?
Irregular Operation Recovery

“... the controlled airspace of many European countries was closed to instrument flight rules traffic, resulting in the largest air-traffic shut-down since World War II. The closures caused millions of passengers to be stranded not only in Europe, but across the world...” Wikipedia

- Automated mass rebooking recommendations
- Customer preferences and priorities
- Alternate routes
- Clear directions for customers
Real time optimization

- Engineering of systems of engagement requires real time decision making
 - We want to provide the best possible action at each interaction
 - Sub second is good enough

Is the answer to make faster solvers?
 Online optimization

Not so sure.
Example: Taxi Dispatch (real customer example, simplified here)

Real time dispatch

<table>
<thead>
<tr>
<th>Time</th>
<th>Car A</th>
<th>Client 1</th>
<th>Car B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Client 2</td>
<td>Car A</td>
<td>Client 1</td>
<td>Car B</td>
</tr>
<tr>
<td>Client 2</td>
<td>Car A</td>
<td>Client 1</td>
<td>Car B</td>
</tr>
</tbody>
</table>

Cars are assigned when customers call
For instance, closest car is selected
The Taxi company waits a bit before assigning cars to customers

Without optimization

<table>
<thead>
<tr>
<th>Time</th>
<th>Car A</th>
<th>Client 1</th>
<th>Car B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Car A</th>
<th>Client 1</th>
<th>Car B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

With optimization

<table>
<thead>
<tr>
<th>Time</th>
<th>Car A</th>
<th>Client 1</th>
<th>Car B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Car A</th>
<th>Client 1</th>
<th>Car B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Making decisions one at a time leads to a myopic effect

Gathering data and constraints to understand the ‘big picture’ creates the opportunity for better decisions

Making several decisions at the same time achieves better results
Delay or not?

- Delaying response can be good
 - Too quick an answer: we get suboptimal resource allocation
 - Too long an answer: we do not deliver a usable service

When delay is not possible?

- Pre position vehicles so that assigning the closest one yields good resource allocation on average

- Two steps
 - Predictive analytics: analyze history to predict demand
 - Compute optimal vehicle positions (set covering problem)

- We did this for ambulances at Ottawa
- We did this for police patrols
Emergency vehicle pre positioning

Training (offline)

- Emergency events history
- Incident Trends

Online

- Weather, time of week
- Available vehicles

ML, Stats

Incident Trends

Emergencies forecast

Optimization

Vehicle positions
Optimization at scale

- Optimization problems get larger and larger

- Two main drivers

- Traditional optimization problems, e.g. supply chain
 - Companies are integrating
 - Companies want to optimize the overall supply chain, directly using point of sale data to drive inventory optimization along the chain, and the manufacturing planning.

- Machine Learning
 - Most ML algorithms are optimization problem: find the model that best fits training data
 - We begin to see ML folks using mathematical programming techniques
 - Boyd
 - Bertsimas
Optimization at scale

- Optimization algorithms **scale up**
 - Larger machines
 - Shared memory parallel algorithms (multi threading)

- Limits of scaling up
 - Sending data to a central compute machine introduces latency
 - Memory can become a bottleneck
 - Cost of machine goes up quickly

- Big data algorithms **scale out**
 - Leverage large number of commodity hardware
 - Move computation to where data is in a reliable way
 - Duplicate storage
 - Node failure resilience

- Hadoop/MapReduce, Spark
 - Store data 3 times
 - Maps computation to data
 - Reduce (aggregates) results in a meaningful way
 - Needs a scheduler
Optimization of big data jobs

Engineering Resource Management Middleware for Optimizing the Performance of Clouds Processing MapReduce Jobs with Deadlines
Lim et al, 2015
Scaling out optimization algorithms?

- Distributing the search space: each worker gets a piece of it
 - Distributed MIP
 - CPLEX (2013) and Gurobi (2014) distributed mip solvers
 - Regin et al, Embarrassingly Parallel Search, 2013
 - Matteo Fischetti, Michele Monaci, and Domenico Salvagnin, Self Split, 2013

- The above assumes the problem is duplicated. Can we split the problem data as well?
 - Convex Optimization problems can be partitioned via ADMM (Boyd)
 - Decomposition methods, eg Benders
 - (Nilsen 97)
Price Optimization

Training (offline)
- Past sales
- Past prices
- ... (ML, Stats)
 - Price elasticity

Online
- Current prices
 - Predicted sales
 - Optimization
 - New prices
Optimization using predicted data

Training (offline)

- History (big data)
 - ML, Stats
 - Predictive model

Online

- Predictive model
 - Predicted data (Small)
 - Current state (Small)
 - Optimization
 - Decisions

Veracity

This is uncertain data
Stable decisions, stable profits

- **Examples**
 - Supply chain planning for a motorcycle vendor
 - 2% increase in profits vs. deterministic optimization
 - Inventory optimization for IBM Microelectronics Division
 - Greater than 7x increase in feasibility vs. deterministic optimization

- **Case studies**
 - Energy cost minimization for Cork County Council
 - Estimated 30% value-add in cost reduction vs. deterministic optimization
 - Leakage reduction for Dublin City Council
 - Estimated 10 times increased stability vs. deterministic optimization

- **Other benefits**
 - Automated toolkit reduces dependence on PhD-level experts & statistical data
 - Visualize trade-off between multiple KPIs across multiple scenarios and plans
On Feb. 14, 2011, the Watson computer made history!
Watson analyzes the human genome to battle brain cancer

a cancer mutation shown on a cell protein pathway from genome sequencing.

The New York Genome Center and IBM are partnering in a first-of-a-kind program to accelerate the race to personalized, life-saving treatment for cancer patients.
Optimization and Big Data: Lots of opportunities!

Volume
Optimization at Scale
Distributed computing
Decomposition methods

Variety
Data in Many Forms
Watson

Velocity
Data in Motion
Online optimization using predicted data

Veracity
Data Uncertainty
Robust optimization
Stochastic Programming
Beyond Smarter Planet: Smarter Comet

- Philae operations were scheduled using IBM Constraint Programming technology
 - Key bottleneck is data transmission
 - 25 minutes
 - Limited storage on Philae
- ESA/CNES had to quickly adjust plan because the robot landed in a tilted position
- CP was used to check the feasibility of adjusted plans