
Game Semantics for Dependent Types

Samson Abramsky, Radha Jagadeesan and Matthijs Vákár

Cork, 28 August, 2015

Samson Abramsky, Radha Jagadeesan and Matthijs Vákár Game Semantics for Dependent Types

Overview

Game theoretic model of dependent type theory (DTT):

refines model in domains and (total) continuous functions;

call-by-name evaluation;

faithful model of (total) DTT with Σ-, Π-, Id-types and finite
inductive type families;

fully complete if Id-types limited;

Id-types more intensional than domain model: function
extensionality fails;

intensional in orthogonal way to HoTT (time vs space): UIP
holds.

Samson Abramsky, Radha Jagadeesan and Matthijs Vákár Game Semantics for Dependent Types

Overview

Game theoretic model of dependent type theory (DTT):

refines model in domains and (total) continuous functions;

call-by-name evaluation;

faithful model of (total) DTT with Σ-, Π-, Id-types and finite
inductive type families;

fully complete if Id-types limited;

Id-types more intensional than domain model: function
extensionality fails;

intensional in orthogonal way to HoTT (time vs space): UIP
holds.

Samson Abramsky, Radha Jagadeesan and Matthijs Vákár Game Semantics for Dependent Types

Game Semantics?

Interpolates between operational and denotational semantics:
very intensional with structural clarity of categorical model;
Unified framework for intensional, computational semantics:

PCF (HO, N, AJM);

references, non-local control, dynamically generated local
names, probability, non-determinism, concurrency...;
various evaluation strategies;
recursive types, polymorphism;
propositional logic, impredicative 2nd order quantification,
external 1st order quantification;
internal 1st order quantification / dependent types
surprisingly absent (and surprisingly hard!);

Tight correspondence with syntax (full abstraction, full
faithful completeness): often unique semantics in this respect.

Samson Abramsky, Radha Jagadeesan and Matthijs Vákár Game Semantics for Dependent Types

Game Semantics?

Interpolates between operational and denotational semantics:
very intensional with structural clarity of categorical model;
Unified framework for intensional, computational semantics:

PCF (HO, N, AJM);
references, non-local control, dynamically generated local
names, probability, non-determinism, concurrency...;
various evaluation strategies;
recursive types, polymorphism;
propositional logic, impredicative 2nd order quantification,
external 1st order quantification;

internal 1st order quantification / dependent types
surprisingly absent (and surprisingly hard!);

Tight correspondence with syntax (full abstraction, full
faithful completeness): often unique semantics in this respect.

Samson Abramsky, Radha Jagadeesan and Matthijs Vákár Game Semantics for Dependent Types

Game Semantics?

Interpolates between operational and denotational semantics:
very intensional with structural clarity of categorical model;
Unified framework for intensional, computational semantics:

PCF (HO, N, AJM);
references, non-local control, dynamically generated local
names, probability, non-determinism, concurrency...;
various evaluation strategies;
recursive types, polymorphism;
propositional logic, impredicative 2nd order quantification,
external 1st order quantification;
internal 1st order quantification / dependent types
surprisingly absent (and surprisingly hard!);

Tight correspondence with syntax (full abstraction, full
faithful completeness): often unique semantics in this respect.

Samson Abramsky, Radha Jagadeesan and Matthijs Vákár Game Semantics for Dependent Types

Game Semantics?

Interpolates between operational and denotational semantics:
very intensional with structural clarity of categorical model;
Unified framework for intensional, computational semantics:

PCF (HO, N, AJM);
references, non-local control, dynamically generated local
names, probability, non-determinism, concurrency...;
various evaluation strategies;
recursive types, polymorphism;
propositional logic, impredicative 2nd order quantification,
external 1st order quantification;
internal 1st order quantification / dependent types
surprisingly absent (and surprisingly hard!);

Tight correspondence with syntax (full abstraction, full
faithful completeness): often unique semantics in this respect.

Samson Abramsky, Radha Jagadeesan and Matthijs Vákár Game Semantics for Dependent Types

Computation / Logic Games
data type / proposition 2-player game (duality!)
computational process / argument play: alternating seq. of moves
program / proof Player (P) strategy
environment / refutation Opponent (O) strategy
variable declarations / axiom links copycat strategies
substitution / cut interaction
termination / correctness winning
pure sequential functional behaviour history-freeness + determinism
(no state, parallelism, control ops) /.. + well-bracketing of strategies

Samson Abramsky, Radha Jagadeesan and Matthijs Vákár Game Semantics for Dependent Types

An example:

Player: x : B, y : (B⇒ B) ` y(x) : B
Opponent: − [tt/x , (λz:B¬z)/y]

B ⇒ (B ⇒ B) ⇒ B
∗ O

∗ P
∗ O

∗ P
tt O

tt P
ff O

ff P

Samson Abramsky, Radha Jagadeesan and Matthijs Vákár Game Semantics for Dependent Types

An example:

Player: x : B, y : (B⇒ B) ` y(x) : B
Opponent: − [(λz:Bff)/y]

B ⇒ (B ⇒ B) ⇒ B
∗ O

∗ P
ff O

ff P

history-free!

Samson Abramsky, Radha Jagadeesan and Matthijs Vákár Game Semantics for Dependent Types

Games and winning history-free strategies form a smcc Game:

I: the game with one play of length 0;

A⊗ B: playing A and B simultaneously, where only Opponent
can switch games;

A (B: swapO,P(A) and B simultaneously, Player switches.

Also model simple type theory (STT): have a ccc Game!:

A⇒ B :=!A (B;

!A: playing ω equivalent copies of A simultaneously, where
only Opponent can switch games;

Product A&B: Opponent chooses to play A or B (unit: I).

Ground types (finite inductive types): for a set X , game X̃∗ with
one Opponent move ∗, followed by any of the Player moves x ∈ X .

Samson Abramsky, Radha Jagadeesan and Matthijs Vákár Game Semantics for Dependent Types

Games and winning history-free strategies form a smcc Game:

I: the game with one play of length 0;

A⊗ B: playing A and B simultaneously, where only Opponent
can switch games;

A (B: swapO,P(A) and B simultaneously, Player switches.

Also model simple type theory (STT): have a ccc Game!:

A⇒ B :=!A (B;

!A: playing ω equivalent copies of A simultaneously, where
only Opponent can switch games;

Product A&B: Opponent chooses to play A or B (unit: I).

Ground types (finite inductive types): for a set X , game X̃∗ with
one Opponent move ∗, followed by any of the Player moves x ∈ X .

Samson Abramsky, Radha Jagadeesan and Matthijs Vákár Game Semantics for Dependent Types

Games and winning history-free strategies form a smcc Game:

I: the game with one play of length 0;

A⊗ B: playing A and B simultaneously, where only Opponent
can switch games;

A (B: swapO,P(A) and B simultaneously, Player switches.

Also model simple type theory (STT): have a ccc Game!:

A⇒ B :=!A (B;

!A: playing ω equivalent copies of A simultaneously, where
only Opponent can switch games;

Product A&B: Opponent chooses to play A or B (unit: I).

Ground types (finite inductive types): for a set X , game X̃∗ with
one Opponent move ∗, followed by any of the Player moves x ∈ X .

Samson Abramsky, Radha Jagadeesan and Matthijs Vákár Game Semantics for Dependent Types

Use the term simple type theory (STT) to refer to a simple
λ-calculus with binary products ×, function types ⇒ and finite
inductive types {ai | 1 ≤ i ≤ n}, or a total finitary PCF with binary
products, with βη-rules and PCF commutative conversions for
case-constructs.

Straightforward consequence of AJM:

Theorem
The interpretation of STT in Game! is fully and faithfully
complete.

Samson Abramsky, Radha Jagadeesan and Matthijs Vákár Game Semantics for Dependent Types

Dependent type theory (DTT)?

What is it?

Curry-Howard for predicate logic: types with free (term)
variables, constructions Σ,Π, Id on types.
Judgements: ` Γ ctxt, Γ ` A type, Γ ` a : A, equations.
Order in context matters!
No clean separation syntax types and terms.

Why care?

Move towards richer type systems: e.g. GADTs in Haskell.
Types allowed to refer to data: e.g. n : N ` List(n) type.
Specification by typing: certification by type checking.
Proof assistants.
Logical Frameworks.

Samson Abramsky, Radha Jagadeesan and Matthijs Vákár Game Semantics for Dependent Types

Dependent type theory (DTT)?

What is it?

Curry-Howard for predicate logic: types with free (term)
variables, constructions Σ,Π, Id on types.
Judgements: ` Γ ctxt, Γ ` A type, Γ ` a : A, equations.
Order in context matters!
No clean separation syntax types and terms.

Why care?

Move towards richer type systems: e.g. GADTs in Haskell.
Types allowed to refer to data: e.g. n : N ` List(n) type.
Specification by typing: certification by type checking.
Proof assistants.
Logical Frameworks.

Samson Abramsky, Radha Jagadeesan and Matthijs Vákár Game Semantics for Dependent Types

A Faithful Translation to Simple Type Theory (STT)

Idea: DTT talks about same algorithms as STT but can assign
them a more precise type/specification.

Formally: have translation of DTT into STT. Let DTT inherit the
equational theory of STT to make translation faithful.

x : A ` (ai 7→i {bi ,j | j}) type 7→ ` {bi ,j | i , j} type

x : A ` Σy :BC type 7→ ` BT × CT type

x : A ` Πy :BC type 7→ ` BT ⇒ CT type

x : A, y : B, y ′ : B ` IdB(y , y ′) type 7→ ` BT type

x ′ : A′ ` B[a/x] type 7→ ` BT type

+ translation on terms.

Samson Abramsky, Radha Jagadeesan and Matthijs Vákár Game Semantics for Dependent Types

A Faithful Translation to Simple Type Theory (STT)

Idea: DTT talks about same algorithms as STT but can assign
them a more precise type/specification.

Formally: have translation of DTT into STT. Let DTT inherit the
equational theory of STT to make translation faithful.

x : A ` (ai 7→i {bi ,j | j}) type 7→ ` {bi ,j | i , j} type

x : A ` Σy :BC type 7→ ` BT × CT type

x : A ` Πy :BC type 7→ ` BT ⇒ CT type

x : A, y : B, y ′ : B ` IdB(y , y ′) type 7→ ` BT type

x ′ : A′ ` B[a/x] type 7→ ` BT type

+ translation on terms.

Samson Abramsky, Radha Jagadeesan and Matthijs Vákár Game Semantics for Dependent Types

The idea of our interpretation [[·]] will be to construct a category
CtxtGame! of dependent context games with a functor ,(−) to
Game!, such that

SyntaxDTT
[[−]]
- CtxtGame!

SyntaxSTT

(−)T

?

∩

⊂
[[−]]

- Game!.

,(−)

?

∩

Games model of DTT will therefore automatically be faithful.

Samson Abramsky, Radha Jagadeesan and Matthijs Vákár Game Semantics for Dependent Types

Dependent Games and Strategies

Game B ∈ ob(DGame!(A)) with dependency on A:

game ,(B) ∈ ob(Game!) (without dependency);

continuous function str(A) B−→ Sub(,(B)) from strategies on
A to subgames (.-closed subsets of plays) of ,(B).

Note: ob(Game!) (ob(DGame!(I)). Indeed, a dependent game
A in empty context is a pair A(⊥) E ,(A), for empty strategy ⊥.

Define ob(DGame!(A)) := ob(DGame!(,(A))).

Can define I, & and ⇒ on games with dependency and make into
ccc with homset DGame!(A)(B,C) := wstr(ΠA(B ⇒ C)).

Samson Abramsky, Radha Jagadeesan and Matthijs Vákár Game Semantics for Dependent Types

Dependent Games and Strategies

Game B ∈ ob(DGame!(A)) with dependency on A:

game ,(B) ∈ ob(Game!) (without dependency);

continuous function str(A) B−→ Sub(,(B)) from strategies on
A to subgames (.-closed subsets of plays) of ,(B).

Note: ob(Game!) (ob(DGame!(I)). Indeed, a dependent game
A in empty context is a pair A(⊥) E ,(A), for empty strategy ⊥.

Define ob(DGame!(A)) := ob(DGame!(,(A))).

Can define I, & and ⇒ on games with dependency and make into
ccc with homset DGame!(A)(B,C) := wstr(ΠA(B ⇒ C)).

Samson Abramsky, Radha Jagadeesan and Matthijs Vákár Game Semantics for Dependent Types

We define a game ΠAB E ,(A)⇒ ,(B) of dependent functions.

Idea: the choice of a fibre B[a/x] for the output of a
dependent function f : ΠAB is entirely the responsibility of
the context that provides the argument a.

Opponent can determine fibre B(τ) of B:
explicitly, revealing winning history-free strategy τ on A(⊥), by
playing in !,(A);
implicitly, by playing in ,(B);

Player has to stay within B(τ) for all τ consistent with
Opponent’s behaviour.

That is, as long as there is such a τ ; otherwise, anything goes.

Indeed, Opponent is totally free and might not play along a
winning strategy, as ,(−) should be faithful (to match (−)T).

Samson Abramsky, Radha Jagadeesan and Matthijs Vákár Game Semantics for Dependent Types

We define a game ΠAB E ,(A)⇒ ,(B) of dependent functions.

Idea: the choice of a fibre B[a/x] for the output of a
dependent function f : ΠAB is entirely the responsibility of
the context that provides the argument a.
Opponent can determine fibre B(τ) of B:

explicitly, revealing winning history-free strategy τ on A(⊥), by
playing in !,(A);
implicitly, by playing in ,(B);

Player has to stay within B(τ) for all τ consistent with
Opponent’s behaviour.

That is, as long as there is such a τ ; otherwise, anything goes.

Indeed, Opponent is totally free and might not play along a
winning strategy, as ,(−) should be faithful (to match (−)T).

Samson Abramsky, Radha Jagadeesan and Matthijs Vákár Game Semantics for Dependent Types

We define a game ΠAB E ,(A)⇒ ,(B) of dependent functions.

Idea: the choice of a fibre B[a/x] for the output of a
dependent function f : ΠAB is entirely the responsibility of
the context that provides the argument a.
Opponent can determine fibre B(τ) of B:

explicitly, revealing winning history-free strategy τ on A(⊥), by
playing in !,(A);
implicitly, by playing in ,(B);

Player has to stay within B(τ) for all τ consistent with
Opponent’s behaviour.

That is, as long as there is such a τ ; otherwise, anything goes.

Indeed, Opponent is totally free and might not play along a
winning strategy, as ,(−) should be faithful (to match (−)T).

Samson Abramsky, Radha Jagadeesan and Matthijs Vákár Game Semantics for Dependent Types

Non-example of dependently typed algorithm: scheduling finance
meetings

Player/Academic: x : months ` 31 : days(x)
Opponent/Education Finance
Business Manager Manager:

Π(m̃onths∗ , d̃ays∗)
∗ O
31 P

Player chooses fibre: e.g. February doesn’t have a 31st day. Mr
Manager shouldn’t allow that...

Samson Abramsky, Radha Jagadeesan and Matthijs Vákár Game Semantics for Dependent Types

Example of dependently typed algorithm:

Academic/Player: x : months ` casedays,months(x , {31, 1, . . . , 1, 31}) : days(x)
Opponent/Education Finance
Business Manager Manager: − [January/x]

Π(m̃onths∗ , d̃ays∗)
∗ O

∗ P
January O

31 P

Samson Abramsky, Radha Jagadeesan and Matthijs Vákár Game Semantics for Dependent Types

Example (fibre-wise identities):

Player: x : A, y : B(x) ` y : B(x)
Opponent: choose your favourite

Π([[A]] , [[B]] ⇒ [[B]])
b O

b P
b′ O

b′ P
...

Samson Abramsky, Radha Jagadeesan and Matthijs Vákár Game Semantics for Dependent Types

Theorem

Have strict indexed ccc DGame!(I)op DGame−→ CCCat of dependent
games:

ob(DGame!(A)) := {continuous str(,(A)) B−→ Sub(,(B))}

hom-sets DGame!(A)(B,C) := wstr(ΠA(B ⇒ C))

identities as in example;

composition: usual AJM-composition;

change of base: usual AJM-composition (works out!).

As we don’t have (additive) Σ-types, this is not a model of DTT!

Theorem
Formally add them: get model CtxtGame! of DTT with ΣΠId
(the last through intersection) and fin. inductive type families!

Samson Abramsky, Radha Jagadeesan and Matthijs Vákár Game Semantics for Dependent Types

Theorem

Have strict indexed ccc DGame!(I)op DGame−→ CCCat of dependent
games:

ob(DGame!(A)) := {continuous str(,(A)) B−→ Sub(,(B))}

hom-sets DGame!(A)(B,C) := wstr(ΠA(B ⇒ C))

identities as in example;

composition: usual AJM-composition;

change of base: usual AJM-composition (works out!).

As we don’t have (additive) Σ-types, this is not a model of DTT!

Theorem
Formally add them: get model CtxtGame! of DTT with ΣΠId
(the last through intersection) and fin. inductive type families!

Samson Abramsky, Radha Jagadeesan and Matthijs Vákár Game Semantics for Dependent Types

Non-Example:

Player: x : B, y : B ` p : IdB(x , y)
Opponent : − [tt/x ,ff/y]

Π(B̃∗ , Π(B̃∗ , IdB̃∗
)

∗ O
∗ P
tt O

∗ P
ff O

tt P

...as tt does not lie in intersection tt ∩ ff.

Samson Abramsky, Radha Jagadeesan and Matthijs Vákár Game Semantics for Dependent Types

Example:

Player: x : B ` reflx : IdB(x , x)
Opponent:

Π(B̃∗ , IdB̃∗
{diagB̃∗})

∗ O
∗ P
x O

x P

...as x lies in x ∩ x .

Samson Abramsky, Radha Jagadeesan and Matthijs Vákár Game Semantics for Dependent Types

Place in intensionality spectrum Id-types:

Domains HoTT Games
Failure of Equality Reflection 3 3 3

Streicher Intensionality Criteria (I1) and (I2) 3 3 3

Streicher Intensionality Criterion (I3) 7 7 3

Failure of Function Extensionality (FunExt) 7 7 3

Failure of Uniqueness of Identity Proofs (UIP) 7 3 7.

Discrete ground types (0-types), but function hierarchy generates
(open) propositional identities: observational equivalences.

Samson Abramsky, Radha Jagadeesan and Matthijs Vákár Game Semantics for Dependent Types

Completeness Results

Summarising, we have

Theorem (Soundness and Faithfulness)
We have a faithful model of DTT with Σ-, Π-, Id-types and finite
inductive type families: faithful functor

SyntaxDTT
[[−]]
- CtxtGame!.

Actually, the model has strong completeness properties.

Theorem (Full Completeness)
This interpretation is full when restricted to the types of the form
A or ΠAIdB(f , g) with A and B built without Id-types:

SyntaxRestricted Types
DTT

[[−]]
- CtxtGame! full.

Samson Abramsky, Radha Jagadeesan and Matthijs Vákár Game Semantics for Dependent Types

Completeness Results

Summarising, we have

Theorem (Soundness and Faithfulness)
We have a faithful model of DTT with Σ-, Π-, Id-types and finite
inductive type families: faithful functor

SyntaxDTT
[[−]]
- CtxtGame!.

Actually, the model has strong completeness properties.

Theorem (Full Completeness)
This interpretation is full when restricted to the types of the form
A or ΠAIdB(f , g) with A and B built without Id-types:

SyntaxRestricted Types
DTT

[[−]]
- CtxtGame! full.

Samson Abramsky, Radha Jagadeesan and Matthijs Vákár Game Semantics for Dependent Types

Future Work

Ultimate goal: intensional, computational analysis of HoTT.

game semantics of higher inductive types / quotient types;

examining function extensionality and univalence;

universes and a more intensional notion of type family;

infinite inductive type families and their definability results;

examining completeness properties of the model for the
complete type hierarchy, including Id-types;

constructing models of DTT with side effects.

Samson Abramsky, Radha Jagadeesan and Matthijs Vákár Game Semantics for Dependent Types

In particular, for the first item:

HtpyGame

∞− Gpd×Set Game --

...................--
Game-- A

∞− Gpd
??

collapsing space-like identity,
a.k.a. 0-truncation

--

--

Set

collapsing time-like identity,
a.k.a. extensional collapse

??
wstr(A)/obs.equiv.

?

X - ||X ||0.

Samson Abramsky, Radha Jagadeesan and Matthijs Vákár Game Semantics for Dependent Types

Bonus Example (Higher order dependent functions):

Player/Employer: x : years, y : Π(x : days(year),Π(y : holidays,B)) ` approval check1 : B
Opponent/Employee : − [2015/x , holiday plans/y]

Π(ỹears∗, Π(d̃ays∗, Π(˜holidays∗, B̃∗)), B̃∗)
∗ O

∗ P
∗ O
Holi P

∗ O
∗ P
2015 O

65 P
tt O

tt P

(Note that Holi happens every year with variable Gregorian date
and that Player gets to choose the day so can even specify the
holiday before the day.)

Samson Abramsky, Radha Jagadeesan and Matthijs Vákár Game Semantics for Dependent Types

Bonus Example (Higher order dependent functions):

Player/Employer: x : years, y : Π(x : days(year),Π(y : holidays,B)) ` approval check2 : B
Opponent/Employee : −[2015/x , holiday plans/y]

Π(ỹears∗, Π(d̃ays∗, Π(˜holidays∗, B̃∗)), B̃∗)
∗ O

∗ P
∗ O
International Talk Like a Pirate Day P

tt O
ff P

(Note that ITLPD happens every year on fixed Gregorian date: 19
September!)

Samson Abramsky, Radha Jagadeesan and Matthijs Vákár Game Semantics for Dependent Types

	Overview
	Game Semantics?
	Dependent type theory (DTT)?
	A Faithful Translation to Simple Type Theory
	Dependent Games and Strategies
	Completeness Results
	Future Work

