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Introduction

>

>

Consider mixed powerdomains for probability and ordinary
nondeterminism (after [TKP], [KP]).

Expect three, corresponding to the three kinds of
domain-theoretic nondeterminism: lower (Hoare), upper
(Smyth), and convex (Plotkin) [Mis]

We take an algebraic point of view, emphasising
(in)equational axioms,

particularly accepting that probabilistic choice distributes
over nondeterministic choice:

X+r(yuz)= X+ y)Ulx+r2)  (refo,1])

Other domain-theoretic authors following this path: Oxford
PRG [1999], Yang, Mislove, Tix, Goubault-Larrecq.

In each of the three cases we obtain three results: free
algebra characterisations, functional representations [G-L],
and healthy predicate transformers.

In this talk only the lower — Hoare — case is considered: it
is the simplest, and illustrates the main themes.



Method

» We discuss the ‘ingredients’, the Hoare and probabilistic
powerdomains, before the ‘dish’, the Hoare mixed
powerdomain.

» We proceed abstractly (function-analytically) considering
general structures — Kegelspitzen — and deducing the
particular case. (Only needed in Hoare case for last two
results.)

» To obtain results for Kegelspitzen we use previous results
for d-cones.

» If time permits we will discuss the other distributive law:

XUy +r2)=xuy)+r(xuz)  (rel0,1])



Algebraic context

» Our algebras are dcpos with finitary Scott-continuous
operations.

» These operations may also continuously depend on
parameters varying over a fixed dcpo, for example,
I =qet [0, 1] OF R,.

» Homorphisms are continuous and preserve the operations
(parametrically).

» We consider classes of such algebras given by
inequational axioms t < u, with the parameters set to
constants.

» Free algebras always exist, and the map f — f extending a
function to a homomorphism is itself continuous.



Axioms for the Hoare (lower) powerdomain

Semilattice
(xuy)uz = xU(yuz

XUy = yux

XUX = X
Join

x < xUy
Bottom
1 < x

Such algebras are the complete semilattices with U = v and
with L the least element.



The Hoare powerdomain #(P)

» H(P) consists of the Scott-closed subsets of P ordered by
inclusion, and with U being set-theoretic union and L being
the empty set.

» It is the free join-semilattice with a least element over P:

where

np(x) =4x and 7(C)=\/ f(x)

xeX

» H(P)is a domain if Pis.



Axioms for probabilistic choice

Barycentric algebra Has operations +, (r € [0, 1]) such that

Xty = X
X +rX = X
X+ry = YHi_rX

(X+pY)+rz = X+pr (¥ +% z) (provided pr < 1)
Convex space Has affine sum operations such that
i1 0% = X
{ Sip (S ax) = X (i pigy)x

where §;; is the Kronecker symbol



Kegelspitzen (Cone tips)

A Kegelspitze is a Scott-continuous barycentric algebra with a
constant 0 and an action - : I x A — A continuously
parameterised on I such that:

r-x=x+,0

(Then0=Las0=0-x<1-x=x.)

Example I where x +, y =rx+ (1 —r)y and 0 = 0.

Kegelspitze homomorphisms are called linear.
They are the Scott-continuous functions which are affine (i.e.,
which preserve the +,) and which preserve 0.



A picture




The (sub)probabilistic powerdomain V1(P)

A valuation is a map p : O(P) — R, such that:

1(0) = 0
pUUV)+u(UnV) = wU)+uV)

It is subprobabilistic if u(P) < 1.
Example: the Dirac valuation dp(x) (x € P), where
ox(V) = xv(x)

The (sub)probabilistic powerdomain V<1(P) consists of all
Scott-continuous such valuations, with the pointwise order.

It is a Kegelspitze with the pointwise probabilistic choice
operations, action, and zero.

Example



Integration

For any Scott-continuous valuation ;. and Scott-continuous
function f : P — R, there is an integral

/fd,u c R

It can be defined by a Choquet integral:

/fd,u _ /O+OO u(F1 (11, +o0]) dr



More on V<1(P)

» V<4(P) is a domain if P is, and then
» V<4(P) is the free Kegelspitze over P:



Distributing probabilistic choice over nondeterministic
choice

Distributive law

X+r(yuz)=(x+ry)U(x+r2)

Convexity
XU(X+ry)uy=xUy

This follows from the distributive law:

(xUy)+r(xUy)
(X+rX)UX+ry)U (Y +rX)U(Y +ry)
XU(X+ry)U(y+rx)Uy
xU(X+ry)Uy

XUy

xUy

Uiy



Semilattice Kegelspitzen

» A Kegelspitze semilattice is a Kegelspitze equipped with a
semilattice operation U over which convex combinations
distribute.

» |t is a Kegelspitze join-semilattice if U is the binary
supremum operation (equivalently, if x < x U y always
holds).

» Example I is a Kegelspitze join-semilattice.



Convex subsets of a Kegelspitze K

» X C K is convex if it is closed under the barycentric
operations, i.e., for all x,y € X, r € [0, 1] we have
X+ryeX.

» If X; is a directed collection of convex sets then their union
UX
i

is also convex.
» If X, Y C K are convex, so is

X+rY={x+rylxeXyecVY}

as
(X+rY)+s(Z+rw) = (X+s2) +r (¥ +s W)

» If X C K is convex, so is its Scott closure X.
» We write conv(X) for the least convex set containing X C K



The Hoare power Kegelspitze H(K)

v

Elements Non-empty convex, Scott-closed subsets of K.

v

Order structure This is subset and for any directed set X;:

v

Barycentric structure

Xtruu)Y = X+rY

Zero

v

Oz k) = {0k}
Semilattice structure

v

X Uy ky Y = conv(X U Y)



Properties of H(K)

» H(K) is the free Kegelspitze join-semilattice over K:

where
nk(x) =1xand f(X) = \/ f(x)

xeX
» H(K) is a domain if K is.



The Hoare subprobabilistic powerdomain

This is
Hm(P) = H(V<1(P))

» If Pis a domain, Hn,(P) is the free Kegelspitze
join-semilattice over P:

where ng = ny_, o dp.

» Hm(P)is a domain if Pis.



More context

>

Our inequational classes of algebras are closed under
Scott-continuous function spaces A", equipped with the
pointwise structure.

If the axioms are commutative (aka entropic) then the the
homomorphisms [A, B] between two algebras in the class
are also in it (again using the pointwise structure),

and the free algebra extension map is an algebra
isomorphism.

The semilattice axioms are commutative:

F (%11 UXx12) U (X1 U Xo2) = (X411 U X21) U (X21 U X22)
The Kegelspitze axioms are commutative:
F (X1 +r X12) +s (Xo1 +r Xo2) = (X11 +s Xo1) +r (X21 +s X22)
FO0+,0=0
The axioms for semilattice Kegelspitzen are not:

(X114 +r X12) U (Xo1 +r X22) = (X141 U X21) 4+ (X21 U X22)



Predicate transformers and functional representations

Want a bijection or isomorphism with state transformers:

P— H(Q) . P— H(Q)
equivalently _—
0(Q) 1A%, »(p) so laws, qp

Setting P = 1 we get a functional representation of H.:

q laws

A:H(Q) = sQ AW, g

Conversely we have
P— H(Q)

P (5O 12WS,

laws
—_

sQ SP



Functional representation of the Hoare powerdomain
Let P be a dcpo.

The functional representation of 7(P) associates to any closed
subset the collection of open sets intersecting it.

Specifically S — and so S — is a Scott-continuous semilattice
and we have a semilattice isomorphism:

A:H(P) = [SP,S]

where
NC)(f) =/ f(x)
or xeC
[T (CnV#0)
’\(C)(V)—{ L (CnVv=0)

Note, up to iso:



Hoare powerdomain predicate transformers

Let P, Q be dcpos.
We have semilattice isomorphisms:

P—— H(Q)

P —— [S9S]

SQ hom SP



Functional representation of the subprobabilistic

powerdomain
Let P be a dcpo.

Integration provides a Scott-continuous bilinear function
/:]IP X Vei(P) = 1

which gives a Kegelspitze isomorphism
A:Veq(P) = 17,1

where
M) (F) = [ felu

It has inverse

Note, as before, up to iso:
I=Vai(1)  Ap)(f) = f(u)



Subprobability powerdomain predicate transformers

Let P, Q be dcpos.
We have Kegelspitze isomorphisms:

P—— VS1 (Q)

P—— [19,1]

HO linear I P



Sublinear maps

» A Kegelspitzemap f: K — K’ is
» homogeneous if

f(r-x)=r-f(x) (xeK,rel)
» convex if
f(x+ry) <fx)+-f(y) (x,yeK,rel)

» sublinear if it is both homogeneous and convex.

» Let K be a Kegelpspitze and L be a join-semilattice
Kegelspitze. The sublinear maps K — L are closed under
arbitrary sups. The linear maps are not.

» The Scott-continuous sublinear such maps form a
join-semilattice Kegelspitze [K, L];.



Functional representation of the Hoare mixed
powerdomain

We aim to prove:

Theorem
Let P be a domain. Then we have a Kegelspitze join-semilattice
isomorphism
Ap: H(V<1(P)) = [1P, 1],
where

Ap(X)(f) = sup [ fdu
pnex

Remark Ap(X) is the sup of the linear evaluation maps ev(x)
(x € X), where

ev(x)(f) = f(x)



Hoare mixed powerdomain predicate transformers

Let P be a dcpo and Q be a domain.
We have Kegelspitze join-semilattice isomorphisms:

P—— H(V<1(Q))

P —— [19,1;

]IP sublinear ]IP



Proof strategy to obtain functional representation

I: Introduce d-cones.

v

v

II: Define Hoare powercones and quote result for them
from [KPT].

v

III: Develop relation between Kegelspitzen and d-cones.

v

IV: Infer result for Hoare power Kegelspitzen.

v

V: Specialise to mixed power domains.



|: d-cones

A d-cone C is a commutative mgnoid with an R,-action,
continuously parameterised in R,:

Commutative Monoid

xX+y)+z = x+(¥+2)
X+y = y+x
x+0 =0

Action
(r+s8)-x = r-x+s-x
0-x =0
rs-x = r-(s-x)
1.-x =

All d-cones are Kegelspitzen, and a map C — D is linear (i.e., a
d-cone morphism) iff it is a Kegelspitze homomorphism.



I: The valuation powerdomain

The valuation powerdomain V(P) consists of all
Scott-continuous valuations, with the pointwise order.

V(P) is a d-cone with the pointwise operations:
(+)(V) = p(V)+v(V)  0(V)=0  (r-p)(V)=r-(u(V))
V(P) is a domain if P is.

Example R, and then (pointwise) the Scott-continuous function
=P
space L(P) =gef R, .



I: Functional representation of the valuation
powerdomain

Let P be a dcpo.
As before, integration provides a Scott-continuous bilinear

function
I:L(P)xV(P)—R,

which gives a d-cone isomorphism

where

but we will need more ......



I: Duality and the valuation powercone

» The dual of a d-cone is C* =4 [C, R,]

v

We already have

v

If P is continuous then (currying) integration also gives us
L(P) = V(P)*

v

So, if P is continuous then V(P) is reflexive where

A d-cone C is reflexive if
ev:C = C*™

v

where
ev(c) = f— f(x)
is the evaluation functional.



lI: Lower semilattice d-cones and Hoare powercones

» C is ajoin-semilattice d-cone if it has binary sups such that
X+(yvz)=(x+y)v(x+2) (x,y,2€C)
r-(xvy)=r-xvr-y (reRsx,yeC)
R, provides an example.
» The Hoare powercone #(C) consists of the non-empty
convex, Scott-closed subsets of C ordered by C.

» Directed sups are given by
Vix=Ux
iel iel
» The d-cone structure is given by;
X+Y =gt X+Y 0= {0}
» binary sups are given by
XV Y =conv(XUY)

» #H(C) is the free join-semilattice d-cone over C and
continuous if C is.



Il: Sublinear maps again

» Amapf:C—Dis
» homogeneous if

f(r-x)=r-f(x) (xeC,reR,)
» subadditive if
fix+y) <f(x)+f(y) (x,y€C)

» sublinear if it is both homogeneous and subadditive

» Agrees with Kegelspitze definitions.

» If Cis ad-cone and L is a semilattice d-cone then the
Scott-continuous sublinear maps from C to L form a
d-cone join-semilattice [C, L]s.



lI: Functional representation of the Hoare powercone

Theorem

Let C be a reflexive continuous d-cone with a continuous dual.
Then we have a d-cone join-semilattice isomorphism

Ac: H(C) = [C,R,]s
where

Ac(X) = sup f(x)
xeX



lll: Embedding Kegelspitzen in d-cones
» A Scott-continuous map f: P — Q is an order-embedding if

f(x)<fly) = x<y (x,yeP)

v

A Kegelspitze K satisfies condition (OC3) if

x<ry = X eKx=r-x (relx,yeK)
Examples Any d-cone; V<1(P).
» Such a K has a universal order-embedding in a d-cone
K—" d-Cone(K)

as a Scott-closed subset. The extension map

f € [K, C] ~ [d-Cone(K), C]

is an isomorphism of d-cones, with the pointwise d-cone
structure on [K, C] (!).

» And d-Cone(K) is continuous if K is.

» Example If P is a domain:

V<1(P) —— V(P)



IV: Norms and nonexpansive maps

» A norm on a d-cone C is a sublinear Scott-continuous map
Il:C—R,.

» Examples The identity on R, and f — \/,.p f(x) on L(P).
» Afunction F : C — D between normed d-cones is

nonexpansive if

IFCOl <Xl (x e C)

» Suppose C and D are normed d-cones and D is also a
d-cone join-semilattice. Then the Scott-continuous
nonexpansive sublinear maps from C to D form a
Kegelspitze [K, L]ys.



IV: Functional representation of Hoare power
Kegelpspitzen
The dual of a Kegelspitze K is the d-cone K* =4 [K,R,]. It has
a norm given by:
Il ="/ f(x)

xeK

Theorem

Let K be a continuous Kegelspitze satisfying (OC3) such that
K* is continuous and d-Cone(K) is reflexive.

Then we have a Kegelspitze join-semilattice isomorphism
Ai: H(K) = [K*, R, ]us
where

Ak(X)(f) = sup f(x)

xeX



IV: Beginning the proof .
We assume we have a universal order embedding K — C of K
as a Scott-closed subset of a continuous d-cone C.

Define a norm on C* by:

Ifl="\/ (k)

xeK
Recalling ev : C — C** where ev(x)(f) = f(x) we have:
Lemma

» ev(x) is nonexpansive iff x € K, and so

» if C is reflexive then the nonexpansive F € C** are the
ev(x) withx € K.

For example, if x € K then:

lev()(F) = ev(x)(F) = f(x) < \/ £(x) = |f]

xeK



IV: More of the proof

— Assume X C K.
Then:
INe(X)(D)] = Ac(X)(f) = \/ f(x) < \/ f(x) = |f]
xeX xeK

<= Assume Ag(X) nonexpansive.

Then, if x € X, we have ev(x) < Ag(X). So ev(x) is
nonexpansive. So x € K. So X C K.



IV: Rest of proof

The universal inclusion
K- C

yields an isomorphism of normed d-cones
which gives an isomorphism of join-semilattice Kegelspitzen

[C*>K+]DS = [K*aEAr]ns
which, with previous, gives the isomorphism

K _ _
H(K) 2, (0 R Yo 2 [K* Rl

which is

/\K : H(K) = [K*7E+]ns

the required isomorphism of join-semilattice Kegelspitzen.



V: Representation of Hoare mixed powerdomain
Let P be a domain.

» Then V<4(P) is continuous; d-Cone(V<1(P)) = V(P) is
reflexive; and the dual of V<1(P) is
V<1(P)* = V(P)* = L(P) and so is continuous.

» So we have an isomorphism of join-semilattice
Kegelspitzen

Nooi(py s H(V<i1(P)) = [Vt (P)" Rulas
» Have isomorphisms of normed d-cones:

Vai(P) = V(P)" = L(P)

» which gives the desired isomorphism of join-semilattice
Kegelspitzen

Ap i H(V<1(P)) = [L(P), R.]ns = [I7, 1]



Why can’t we proceed directly?
» Somehow replace the cone by a Kegelspitze and R, by T in
the following?

Theorem

(Separation Theorem [TKP]) Let D be a continuous d-cone with
two disjoint nonempty convex subsets C and V, with C
Scott-closed and V' Scott-open.

Then there exists a Scott-continuous linear functional
f: C — R, such that

f(x) <1< f(y)
forallx e Candally € V.

» In other cases (upper, convex) don’t immediately know how
to formulate in I terms.

» In the various cases it is already complex in d-cone case,
so at least current ‘piggyback’ approach is efficient.



The other distributivity law

This is

(D) XU(y+rz)=xUy)+r(xuz) (rel)

Let S, B be the theories of semilattices, barycentric algebras,
respectively.

Theorem

The theory S + B + D is equivalent to the theory of two
semilattices, with one distributing over the other.

Lemma
Suppose T extends B. Then:

Frt+ru=t+su
Fr t+pu=t+qu

where0<r<s<tland0<p<qg<



Proof (all reals in ]0, 1])
Substituting (y +, z) for x in D’ (and using S and re-using D’)
we get (E1)

Y+r2) = (Y +r2)UY)+((y+r2)U2) = (Y +,(yU2))+((yU2)+,2)
Substituting y U z for z (and using S and then B) we get:

y+r(yuz) =y +r(yuz)+r(yuz)+r(yuz)) = y+.(yvz)
So by the Lemma we get (E2):

y+r(yuz)=y+s(yuz)

But then:

Y+rz) = (Y+r(Yu2z)+r(yuz)+rz) (by(E )
= (Y+r(Yu2z)+r((yuz)+r2z) (by(E2),andB)
= Y+r(yuz)+r((yvz)+rz) (byB )
= (Y+r(YU2)+r ((yUz)+r2z) (by(E2),andB)
= (y+r2) (by (E )

So

YH+rz=y+s2Z



