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Introduction
I Consider mixed powerdomains for probability and ordinary

nondeterminism (after [TKP], [KP]).
I Expect three, corresponding to the three kinds of

domain-theoretic nondeterminism: lower (Hoare), upper
(Smyth), and convex (Plotkin) [Mis]

I We take an algebraic point of view, emphasising
(in)equational axioms,

I particularly accepting that probabilistic choice distributes
over nondeterministic choice:

x +r (y ∪ z) = (x +r y) ∪ (x +r z) (r ∈ [0,1])

I Other domain-theoretic authors following this path: Oxford
PRG [1999], Yang, Mislove, Tix, Goubault-Larrecq.

I In each of the three cases we obtain three results: free
algebra characterisations, functional representations [G-L],
and healthy predicate transformers.

I In this talk only the lower — Hoare — case is considered: it
is the simplest, and illustrates the main themes.



Method

I We discuss the ‘ingredients’, the Hoare and probabilistic
powerdomains, before the ‘dish’, the Hoare mixed
powerdomain.

I We proceed abstractly (function-analytically) considering
general structures — Kegelspitzen — and deducing the
particular case. (Only needed in Hoare case for last two
results.)

I To obtain results for Kegelspitzen we use previous results
for d-cones.

I If time permits we will discuss the other distributive law:

x ∪ (y +r z) = (x ∪ y) +r (x ∪ z) (r ∈ [0,1])



Algebraic context
I Our algebras are dcpos with finitary Scott-continuous

operations.

I These operations may also continuously depend on
parameters varying over a fixed dcpo, for example,
I =def [0,1] or R+.

I Homorphisms are continuous and preserve the operations
(parametrically).

I We consider classes of such algebras given by
inequational axioms t ≤ u, with the parameters set to
constants.

I Free algebras always exist, and the map f 7→ f extending a
function to a homomorphism is itself continuous.



Axioms for the Hoare (lower) powerdomain

Semilattice 
(x ∪ y) ∪ z = x ∪ (y ∪ z)

x ∪ y = y ∪ x
x ∪ x = x

Join
x ≤ x ∪ y

Bottom
⊥ ≤ x

Such algebras are the complete semilattices with ∪ = ∨ and
with ⊥ the least element.



The Hoare powerdomain H(P)

I H(P) consists of the Scott-closed subsets of P ordered by
inclusion, and with ∪ being set-theoretic union and ⊥ being
the empty set.

I It is the free join-semilattice with a least element over P:

P

f

H(P)

ηP

?

f
- A
-

where

ηP(x) = ↓x and f (C) =
∨

x∈X

f (x)

I H(P) is a domain if P is.



Axioms for probabilistic choice

Barycentric algebra Has operations +r (r ∈ [0,1]) such that
x +1 y = x
x +r x = x
x +r y = y +1−r x
(x +p y) +r z = x +pr (y + r(1−p)

1−pr
z) (provided pr < 1)

Convex space Has affine sum operations such that
∑n

i=1 δijxi = xj∑n
i=1 pi

(∑m
j=1 qijxj

)
=

∑m
j=1
(∑n

i=1 piqij
)
xj

where δij is the Kronecker symbol



Kegelspitzen (Cone tips)

A Kegelspitze is a Scott-continuous barycentric algebra with a
constant 0 and an action · : I× A→ A continuously
parameterised on I such that:

r · x = x +r 0

(Then 0 =⊥ as 0 = 0 · x ≤ 1 · x = x .)

Example I where x +r y = rx + (1− r)y and 0 = 0.

Kegelspitze homomorphisms are called linear.
They are the Scott-continuous functions which are affine (i.e.,
which preserve the +r ) and which preserve 0.



A picture



The (sub)probabilistic powerdomain V≤1(P)

A valuation is a map µ : O(P)→ R+ such that:

µ(∅) = 0
µ(U ∪ V ) + µ(U ∩ V ) = µ(U) + µ(V )

It is subprobabilistic if µ(P) ≤ 1.

Example: the Dirac valuation δP(x) (x ∈ P), where

δx (V ) = χV (x)

The (sub)probabilistic powerdomain V≤1(P) consists of all
Scott-continuous such valuations, with the pointwise order.

It is a Kegelspitze with the pointwise probabilistic choice
operations, action, and zero.

Example
V≤1(1) ∼= I



Integration

For any Scott-continuous valuation µ and Scott-continuous
function f : P → R+ there is an integral∫

f dµ ∈ R+

It can be defined by a Choquet integral:∫
f dµ =

∫ +∞

0
µ(f−1(]r ,+∞]

)
dr



More on V≤1(P)

I V≤1(P) is a domain if P is, and then
I V≤1(P) is the free Kegelspitze over P:

P

f

V≤1(P)

δP

?

f
- K

-



Distributing probabilistic choice over nondeterministic
choice

Distributive law

x +r (y ∪ z) = (x +r y) ∪ (x +r z)

Convexity
x ∪ (x +r y) ∪ y = x ∪ y

This follows from the distributive law:

x ∪ y = (x ∪ y) +r (x ∪ y)
= (x +r x) ∪ (x +r y) ∪ (y +r x) ∪ (y +r y)
= x ∪ (x +r y) ∪ (y +r x) ∪ y
⊇ x ∪ (x +r y) ∪ y
⊇ x ∪ y



Semilattice Kegelspitzen

I A Kegelspitze semilattice is a Kegelspitze equipped with a
semilattice operation ∪ over which convex combinations
distribute.

I It is a Kegelspitze join-semilattice if ∪ is the binary
supremum operation (equivalently, if x ≤ x ∪ y always
holds).

I Example I is a Kegelspitze join-semilattice.



Convex subsets of a Kegelspitze K
I X ⊆ K is convex if it is closed under the barycentric

operations, i.e., for all x , y ∈ X , r ∈ [0,1] we have
x +r y ∈ X .

I If Xi is a directed collection of convex sets then their union⋃
i

Xi

is also convex.
I If X ,Y ⊆ K are convex, so is

X +r Y = {x +r y | x ∈ X , y ∈ Y}

as
(x +r y) +s (z +r w) = (x +s z) +r (y +s w)

I If X ⊆ K is convex, so is its Scott closure X .
I We write conv(X ) for the least convex set containing X ⊆ K



The Hoare power Kegelspitze H(K )

I Elements Non-empty convex, Scott-closed subsets of K .
I Order structure This is subset and for any directed set Xi :∨↑

i∈I

Xi =
⋃↑
i∈I

Xi

I Barycentric structure

X+rH(K )Y = X+r Y

I Zero
0H(K ) = {0K}

I Semilattice structure

X ∪H(K ) Y = conv(X ∪ Y )



Properties of H(K )

I H(K ) is the free Kegelspitze join-semilattice over K :

K

f

H(K )

ηK

?

f
- L
-

where
ηK (x) = ↓x and f (X ) =

∨
x∈X

f (x)

I H(K ) is a domain if K is.



The Hoare subprobabilistic powerdomain

This is
Hm(P) = H(V≤1(P))

I If P is a domain, Hm(P) is the free Kegelspitze
join-semilattice over P:

P

f

H(V≤1(P))

ηm
P

?

f
- L
-

where ηm
P = ηV≤1 ◦ δP .

I Hm(P) is a domain if P is.



More context
I Our inequational classes of algebras are closed under

Scott-continuous function spaces AP , equipped with the
pointwise structure.

I If the axioms are commutative (aka entropic) then the the
homomorphisms [A,B] between two algebras in the class
are also in it (again using the pointwise structure),

I and the free algebra extension map is an algebra
isomorphism.

I The semilattice axioms are commutative:

` (x11 ∪ x12) ∪ (x21 ∪ x22) = (x11 ∪ x21) ∪ (x21 ∪ x22)

I The Kegelspitze axioms are commutative:

` (x11 +r x12) +s (x21 +r x22) = (x11 +s x21) +r (x21 +s x22)

` 0 +r 0 = 0
I The axioms for semilattice Kegelspitzen are not:

6`(x11 +r x12) ∪ (x21 +r x22) = (x11 ∪ x21) +r (x21 ∪ x22)



Predicate transformers and functional representations

Want a bijection or isomorphism with state transformers:

P −→ H(Q)

O(Q)
laws−−−→ O(P)

equivalently
P −→ H(Q)

SQ laws−−−→ SP

Setting P = 1 we get a functional representation of H:

Λ : H(Q) ∼= SQ laws−−−→ S

Conversely we have

P −→ H(Q)

P −→ (SQ laws−−−→ S)

SQ laws−−−→ SP



Functional representation of the Hoare powerdomain
Let P be a dcpo.
The functional representation of H(P) associates to any closed
subset the collection of open sets intersecting it.

Specifically S — and so SP — is a Scott-continuous semilattice
and we have a semilattice isomorphism:

Λ : H(P) ∼= [SP ,S]

where
Λ(C)(f ) =

∨
x∈C

f (x)

or

Λ(C)(V ) =

{
> (C ∩ V 6= ∅)
⊥ (C ∩ V = ∅)

Note, up to iso:

S = H(1) Λ(C)(f ) = f (C)



Hoare powerdomain predicate transformers

Let P, Q be dcpos.
We have semilattice isomorphisms:

P −−−→ H(Q)

P −−−→ [SQ, S]

SQ hom−−−−→ SP



Functional representation of the subprobabilistic
powerdomain

Let P be a dcpo.
Integration provides a Scott-continuous bilinear function∫

: IP × V≤1(P)→ I

which gives a Kegelspitze isomorphism

Λ : V≤1(P) ∼= [IP , I]

where
Λ(µ)(f ) =

∫
f dµ

It has inverse

Λ−1(F ) = V 7→ F (χV )

Note, as before, up to iso:

I = V≤1(1) Λ(µ)(f ) = f (µ)



Subprobability powerdomain predicate transformers

Let P, Q be dcpos.
We have Kegelspitze isomorphisms:

P −−−→ V≤1(Q)

P −−−→ [IQ, I]

IQ linear−−−−→ IP



Sublinear maps

I A Kegelspitze map f : K → K ′ is
I homogeneous if

f (r · x) = r · f (x) (x ∈ K , r ∈ I)

I convex if

f (x +r y) ≤ f (x) +r f (y) (x , y ∈ K , r ∈ I)

I sublinear if it is both homogeneous and convex.

I Let K be a Kegelpspitze and L be a join-semilattice
Kegelspitze. The sublinear maps K −→ L are closed under
arbitrary sups. The linear maps are not.

I The Scott-continuous sublinear such maps form a
join-semilattice Kegelspitze [K ,L]s.



Functional representation of the Hoare mixed
powerdomain

We aim to prove:

Theorem
Let P be a domain. Then we have a Kegelspitze join-semilattice
isomorphism

ΛP : H(V≤1(P)) ∼= [IP , I]s

where

ΛP(X )(f ) = sup
µ∈X

∫
f dµ

Remark ΛP(X ) is the sup of the linear evaluation maps ev(x)
(x ∈ X ), where

ev(x)(f ) = f (x)



Hoare mixed powerdomain predicate transformers

Let P be a dcpo and Q be a domain.
We have Kegelspitze join-semilattice isomorphisms:

P −−−→ H(V≤1(Q))

P −−−→ [IQ, I]s

IP sublinear−−−−−−→ IP



Proof strategy to obtain functional representation

I I: Introduce d-cones.

I II: Define Hoare powercones and quote result for them
from [KPT].

I III: Develop relation between Kegelspitzen and d-cones.

I IV: Infer result for Hoare power Kegelspitzen.

I V: Specialise to mixed power domains.



I: d-cones
A d-cone C is a commutative monoid with an R+-action,
continuously parameterised in R+:

Commutative Monoid
(x + y) + z = x + (y + z)
x + y = y + x
x + 0 = 0

Action 
(r + s) · x = r · x + s · x
0 · x = 0

rs · x = r · (s · x)
1 · x = x

All d-cones are Kegelspitzen, and a map C → D is linear (i.e., a
d-cone morphism) iff it is a Kegelspitze homomorphism.



I: The valuation powerdomain

The valuation powerdomain V(P) consists of all
Scott-continuous valuations, with the pointwise order.

V(P) is a d-cone with the pointwise operations:

(µ+ν)(V ) = µ(V )+ν(V ) 0(V ) = 0 (r ·µ)(V ) = r ·(µ(V ))

V(P) is a domain if P is.

Example R+ and then (pointwise) the Scott-continuous function
space L(P) =def R

P
+ .



I: Functional representation of the valuation
powerdomain

Let P be a dcpo.
As before, integration provides a Scott-continuous bilinear
function

I : L(P)× V(P)→ R+

which gives a d-cone isomorphism

Λ : V(P) ∼= [L(P),R+]

where

Λ(µ)(f ) =

∫
f dµ

but we will need more ......



I: Duality and the valuation powercone

I The dual of a d-cone is C∗ =def [C,R+]

I We already have
V(P) ∼= L(P)∗

I If P is continuous then (currying) integration also gives us

L(P) ∼= V(P)∗

I So, if P is continuous then V(P) is reflexive where

I A d-cone C is reflexive if

ev : C ∼= C∗∗

where
ev(c) = f 7→ f (x)

is the evaluation functional.



II: Lower semilattice d-cones and Hoare powercones

I C is a join-semilattice d-cone if it has binary sups such that
x + (y ∨ z) = (x + y) ∨ (x + z) (x , y , z ∈ C)

r · (x ∨ y) = r · x ∨ r · y (r ∈ R+, x , y ∈ C)

R+ provides an example.
I The Hoare powercone H(C) consists of the non-empty

convex, Scott-closed subsets of C ordered by ⊆.
I Directed sups are given by∨↑

i∈I

Xi =
⋃↑
i∈I

Xi

I The d-cone structure is given by;

X + Y =def X + Y 0 = {0}
I binary sups are given by

X ∨ Y = conv(X ∪ Y )

I H(C) is the free join-semilattice d-cone over C and
continuous if C is.

Example C = V(P) with P continuous.



II: Sublinear maps again

I A map f : C → D is
I homogeneous if

f (r · x) = r · f (x) (x ∈ C, r ∈ R+)

I subadditive if

f (x + y) ≤ f (x) + f (y) (x , y ∈ C)

I sublinear if it is both homogeneous and subadditive

I Agrees with Kegelspitze definitions.

I If C is a d-cone and L is a semilattice d-cone then the
Scott-continuous sublinear maps from C to L form a
d-cone join-semilattice [C,L]s.



II: Functional representation of the Hoare powercone

Theorem
Let C be a reflexive continuous d-cone with a continuous dual.
Then we have a d-cone join-semilattice isomorphism

ΛC : H(C) ∼= [C,R+]s

where
ΛC(X ) = sup

x∈X
f (x)



III: Embedding Kegelspitzen in d-cones
I A Scott-continuous map f :P → Q is an order-embedding if

f (x) ≤ f (y) =⇒ x ≤ y (x , y ∈ P)

I A Kegelspitze K satisfies condition (OC3) if

x ≤ r · y =⇒ ∃x ′ ∈ K . x = r · x ′ (r ∈ I, x , y ∈ K )

Examples Any d-cone; V≤1(P).
I Such a K has a universal order-embedding in a d-cone

K
e

↪−−−−→ d-Cone(K )

as a Scott-closed subset. The extension map

f ∈ [K ,C] 7→ [d-Cone(K ),C]

is an isomorphism of d-cones, with the pointwise d-cone
structure on [K ,C] (!).

I And d-Cone(K ) is continuous if K is.
I Example If P is a domain:

V≤1(P) ↪−−−→ V(P)



IV: Norms and nonexpansive maps

I A norm on a d-cone C is a sublinear Scott-continuous map
|| || : C → R+.

I Examples The identity on R+ and f 7→
∨

x∈P f (x) on L(P).

I A function F : C → D between normed d-cones is
nonexpansive if

||F (x)|| ≤ ||x || (x ∈ C)

I Suppose C and D are normed d-cones and D is also a
d-cone join-semilattice. Then the Scott-continuous
nonexpansive sublinear maps from C to D form a
Kegelspitze [K ,L]ns.



IV: Functional representation of Hoare power
Kegelpspitzen

The dual of a Kegelspitze K is the d-cone K ∗ =def [K ,R+]. It has
a norm given by:

||f || =
∨

x∈K

f (x)

Theorem
Let K be a continuous Kegelspitze satisfying (OC3) such that
K ∗ is continuous and d-Cone(K ) is reflexive.

Then we have a Kegelspitze join-semilattice isomorphism

ΛK : H(K ) ∼= [K ∗,R+]ns

where
ΛK (X )(f ) = sup

x∈X
f (x)



IV: Beginning the proof
We assume we have a universal order embedding K

e
↪−→ C of K

as a Scott-closed subset of a continuous d-cone C.
Define a norm on C∗ by:

||f || =
∨

x∈K

f (k)

Recalling ev : C → C∗∗ where ev(x)(f ) = f (x) we have:

Lemma
I ev(x) is nonexpansive iff x ∈ K , and so
I if C is reflexive then the nonexpansive F ∈ C∗∗ are the

ev(x) with x ∈ K .

For example, if x ∈ K then:

||ev(x)(f )|| = ev(x)(f ) = f (x) ≤
∨

x∈K

f (x) = ||f ||



IV: More of the proof

H(K )
ΛC �H(K )

- [C∗,R+]ns

H(C)

H(e)

?

∩

ΛC

- [C∗,R+]s

?

∩

=⇒ Assume X ⊆ K .

Then:

||ΛC(X )(f )|| = ΛC(X )(f ) =
∨

x∈X

f (x) ≤
∨

x∈K

f (x) = ||f ||

⇐= Assume ΛC(X ) nonexpansive.

Then, if x ∈ X , we have ev(x) ≤ ΛC(X ). So ev(x) is
nonexpansive. So x ∈ K . So X ⊆ K .



IV: Rest of proof
The universal inclusion

K
e

↪−−→ C

yields an isomorphism of normed d-cones

C∗ ∼= K ∗

which gives an isomorphism of join-semilattice Kegelspitzen

[C∗,R+]ns ∼= [K ∗,R+]ns

which, with previous, gives the isomorphism

H(K )
ΛC�H(K )−−−−−→ [C∗,R+]ns ∼= [K ∗,R+]ns

which is

ΛK : H(K ) ∼= [K ∗,R+]ns

the required isomorphism of join-semilattice Kegelspitzen.



V: Representation of Hoare mixed powerdomain
Let P be a domain.

I Then V≤1(P) is continuous; d-Cone(V≤1(P)) ∼= V(P) is
reflexive; and the dual of V≤1(P) is
V≤1(P)∗ ∼= V(P)∗ ∼= L(P) and so is continuous.

I So we have an isomorphism of join-semilattice
Kegelspitzen

ΛV≤1(P) : H(V≤1(P)) ∼= [V≤1(P)∗,R+]ns

I Have isomorphisms of normed d-cones:

V≤1(P)∗ ∼= V(P)∗ ∼= L(P)

I which gives the desired isomorphism of join-semilattice
Kegelspitzen

ΛP : H(V≤1(P)) ∼= [L(P),R+]ns ∼= [IP , I]s



Why can’t we proceed directly?
I Somehow replace the cone by a Kegelspitze and R+ by I in

the following?

Theorem
(Separation Theorem [TKP]) Let D be a continuous d-cone with
two disjoint nonempty convex subsets C and V, with C
Scott-closed and V Scott-open.
Then there exists a Scott-continuous linear functional
f : C → R+ such that

f (x) ≤ 1 < f (y)

for all x ∈ C and all y ∈ V.

I In other cases (upper, convex) don’t immediately know how
to formulate in I terms.

I In the various cases it is already complex in d-cone case,
so at least current ‘piggyback’ approach is efficient.



The other distributivity law
This is

(D′) x ∪ (y +r z) = (x ∪ y) +r (x ∪ z) (r ∈ I)

Let S, B be the theories of semilattices, barycentric algebras,
respectively.

Theorem
The theory S + B + D is equivalent to the theory of two
semilattices, with one distributing over the other.

Lemma
Suppose T extends B. Then:

`T t +r u = t +s u
`T t +p u = t +q u

where 0 < r < s < 1 and 0 < p < q < 1



Proof (all reals in ]0,1[)
Substituting (y +r z) for x in D′ (and using S and re-using D′)
we get (E1)

(y+r z) = ((y+r z)∪y)+r ((y+r z)∪z) = (y+r (y∪z))+r ((y∪z)+r z)

Substituting y ∪ z for z (and using S and then B) we get:

y +r (y ∪z) = (y +r (y ∪z)) +r ((y ∪z) +r (y ∪z)) = y +r2 (y ∪z)

So by the Lemma we get (E2):

y +r (y ∪ z) = y +s (y ∪ z)

But then:
(y +r z) = (y +r (y ∪ z)) +r ((y ∪ z) +r z) (by (E1))

= (y +r ′ (y ∪ z)) +r ((y ∪ z) +r ′ z) (by (E2), and B)
= (y +r (y ∪ z)) +r ′ ((y ∪ z) +r z) (by B)
= (y +r ′ (y ∪ z)) +r ′ ((y ∪ z) +r ′ z) (by (E2), and B)
= (y +r ′ z) (by (E1))

So
y +r z = y +s z


