Oles Embeddings
(work in progress)

Paul Blain Levy

University of Birmingham

September 1, 2015
Frank Oles in his PhD thesis (1982) defined a category of store shapes for semantics of local state with John Reynolds.
Frank Oles in his PhD thesis (1982) defined a category of store shapes for semantics of local state with John Reynolds.

I applied his construction to a game category in “Global state considered helpful” (MFPS 2008).
Frank Oles in his PhD thesis (1982) defined a category of store shapes for semantics of local state with John Reynolds.

I applied his construction to a game category in “Global state considered helpful” (MFPS 2008)
Frank Oles in his PhD thesis (1982) defined a category of store shapes for semantics of local state with John Reynolds.

I applied his construction to a game category in “Global state considered helpful” (MFPS 2008)

It’s connected to numerous structures in the semantics of effects:

- Power and Plotkin’s lookup-update algebras
- Melliès’ redundancy theorem for lookup equations
- Power and Shkaravska’s account of arrays as comodels
- Hyland, Plotkin and Power’s combination of a functor and a monad
- My account of monads supporting exception handling
- Hermida and Tennent’s account of monoidal indeterminates
- Johnson et al’s account of lenses.
Three levels of generality

1. Oles embedding in a category
2. Oles embedding across an action
3. Base for a monad
Three levels of generality

1. Oles embedding in a category
2. Oles embedding across an action
3. Base for a monad

Most of the talk will be about (1).
- Oles embeddings and their complements
- Oles expansions and their quotients
- Oles intersections.
The complementor of an injection $f : A \hookrightarrow B$ is the function $f^c : B \to B + A$ sending
- $f(a) \mapsto \text{inr } a$
- $b \mapsto \text{inl } b$ if $b \notin \text{range}(f)$.
The complementor of an injection \(f : A \hookrightarrow B \) is the function \(f^c : B \rightarrow B + A \) sending

- \(f(a) \mapsto \text{inr } a \)
- \(b \mapsto \text{inl } b \) if \(b \notin \text{range}(f) \).

We then have the equations:

\[
\begin{align*}
A & \xrightarrow{f} B & B & \xrightarrow{f^c} B + A & B & \xrightarrow{f^c} B + A \\
\downarrow \text{inr} & \downarrow f^c & \downarrow \text{id} & \downarrow [\text{id},f] & \downarrow f^c & \downarrow f^c + A \\
B + A & \quad & B & \quad & B + A & \quad \\
\end{align*}
\]
Basic definition

Let C be a category with binary coproducts and initial object. We form a category $\text{Oles}(C)$ with the same objects as C.
Let C be a category with binary coproducts and initial object. We form a category $\text{Oles}(C)$ with the same objects as C.

An Oles embedding $f : A \to B$ consists of

- an map $f^i : A \to B$ (the injection)
- a map $f^c : B \to B + A$ (the complementor)

satisfying the equations:

\[
\begin{align*}
A & \xrightarrow{f^i} B \\
\downarrow \text{inr} & \quad \downarrow f^c \\
B + A & \quad B + A
\end{align*}
\]

\[
\begin{align*}
B & \xrightarrow{f^c} B + A \\
\downarrow \text{id} & \quad \downarrow [\text{id}, f^i] \\
B & \quad (B + A) + A
\end{align*}
\]
Making a category

The identity on A has injection id_A and complementor

$$\text{inr} : A \rightarrow A + A$$

The composite of $f : A \rightarrow B$ and $g : B \rightarrow C$ has injection

$$A \xrightarrow{f^i} B \xrightarrow{g^i} C$$

and complementor

$$C \xrightarrow{g^c} C + B \xrightarrow{C + f^c} C + (B + A) \xrightarrow{[\text{inl}, g^i + A]} C + A$$

Theorem

$\text{Oles}(\textbf{Set})$ is the category of sets and injections.
Basic properties

- \((\text{Oles}(\mathcal{C}), 0, +)\) is a symmetric monoidal category with initial unit.
- Its groupoid of isomorphisms is the same as that of \(\mathcal{C}\).
A coproduct embedding $A \hookrightarrow B$ consists of an object X and $\alpha : X + A \cong B$.
A coproduct embedding $A \rightarrowtail B$ consists of an object X and $\alpha : X + A \cong B$.

These give a bicategory with the same objects as C.

A 2-cell from (X, α) to (Y, β) is $h : X \rightarrow Y$ such that

$$
\begin{array}{c}
X + A \xymatrix{ \ar[r]^\alpha & B} \\
h + A \ar[d] \\
Y + A \ar[ur]_{\beta}
\end{array}
$$
A coproduct embedding $A \hookrightarrow B$ consists of an object X and $\alpha : X + A \cong B$.

These give a bicategory with the same objects as C.

A 2-cell from (X, α) to (Y, β) is $h : X \to Y$ such that

\[
\begin{array}{ccc}
X + A & \overset{\alpha}{\longrightarrow} & B \\
h + A & \downarrow & \beta \\
Y + A & \end{array}
\]

Every coproduct embedding gives rise to an Oles embedding, so there’s a functor from the bicategory to $\text{Oles}(C)$.
A complement of an Oles embedding $f : A \leftrightarrow B$ is a coproduct embedding that gives rise to it. These form a category.
A complement of an Oles embedding \(f : A \hookrightarrow B \) is a coproduct embedding that gives rise to it. These form a category.

Does every Oles embedding have

- a complement? Not necessarily
- an essentially unique complement? If \(C \) is extensive.
- a terminal complement? If \(C \) has equalizers preserved by \(- + X\)
- an initial complement? Not necessarily
Let C have binary products and a terminal object.

An **Oles expansion** $A \to B$ is an Oles embedding in C^{op}.
Let \mathcal{C} have binary products and a terminal object.

An **Oles expansion** $A \to B$ is an Oles embedding in \mathcal{C}^{op}

- a morphism $p : B \to A$ (the projection)
- a morphism $\bullet : B \times A \to B$ (the overwriter)

satisfying

\[
\forall b \in B, a \in A. \quad p(b \bullet a) = a
\]

\[
\forall b \in B. \quad b \bullet p(b) = b
\]

\[
\forall b \in B, a, a' \in A. \quad (b \bullet a) \bullet a' = b \bullet a'
\]

Also called a **very well-behaved total lens**.
A product expansion $A \rightarrow B$ consists of an object X and $X \times A \cong B$. We take 2-cells to be C-morphisms.
A product expansion $A \to B$ consists of an object X and $X \times A \cong B$. We take 2-cells to be C-morphisms.

A quotient of an Oles expansion $f : A \to B$ is a product expansion that gives rise to it.
A product expansion $A \to B$ consists of an object X and $X \times A \cong B$. We take 2-cells to be \mathcal{C}-morphisms.

A quotient of an Oles expansion $f : A \to B$ is a product expansion that gives rise to it.

In \textbf{Set}, the Oles expansion $0 \to 0$ has initial quotient 0 and terminal quotient 1.

Quotients of an Oles expansion

A product expansion $A \to B$ consists of an object X and $X \times A \cong B$. We take 2-cells to be C-morphisms.

A quotient of an Oles expansion $f : A \to B$ is a product expansion that gives rise to it.

In \mathbf{Set}, the Oles expansion $0 \to 0$ has initial quotient 0 and terminal quotient 1.

Oles proved: in \mathbf{Set}, every expansion has an initial quotient.
A square of Oles embeddings

\[
\begin{array}{ccc}
A & \xrightarrow{h} & B \\
\downarrow{k} & & \downarrow{g} \\
C & \xrightarrow{f} & D
\end{array}
\]

is an Oles intersection square when

\[
D \xrightarrow{f^c} D + C
\]

\[
\begin{array}{ccc}
D + B & \xrightarrow{f^c + h^c} & (D + C) + (B + A) \\
\downarrow{g^c} & & \downarrow{g^c + k^c} \\
(D + B) + (C + A)
\end{array}
\]

Such squares compose.

If \(A = 0\) then \(f^c\) and \(g^c\) are disjoint.
Oles intersection square

A square of Oles embeddings

\[A \xrightarrow{h} B \]
\[\downarrow k \quad \downarrow g \]
\[C \xrightarrow{f} D \]

is an Oles intersection square when

\[D \xrightarrow{f^c} D + C \]
\[\downarrow g^c \]
\[D + B \xrightarrow{f^c + h^c} (D + C) + (B + A) \xrightarrow{\mathbb{R}} (D + B) + (C + A) \]

Such squares compose.
A square of Oles embeddings

\[
\begin{array}{c}
A \xrightarrow{h} B \\
\downarrow k \\
\downarrow g \\
C \xrightarrow{f} D
\end{array}
\]

is an Oles intersection square when

\[
\begin{array}{c}
D \xrightarrow{f^c} D + C \\
\downarrow g^c \\
D + B \xrightarrow{f^c + h^c} (D + C) + (B + A) \xrightarrow{\mathbb{R}} (D + B) + (C + A) \\
\downarrow g^c + k^c
\end{array}
\]

Such squares compose.

If \(A = 0 \) then \(f \) and \(g \) are disjoint.
Are they pullbacks?

An Oles intersection square \[A \rightarrow^h B \rightarrow^k C \leftarrow_f D \] is not a pullback in general.

It is if binary coproducts are extensive. If there exists a \[C \rightarrow D \rightarrow A \] it's an absolute pullback in \(C \). Proved by Trnková for \(C = \text{Set} \).

It's also a pullback in Oles \((C) \), provided \(-+Y\) preserves pullbacks.
Are they pullbacks?

An Oles intersection square \(A \xrightarrow{h} B \) is not a pullback in general.

\[
\begin{array}{ccc}
A & \xrightarrow{h} & B \\
\downarrow{k} & & \downarrow{g} \\
C & \xrightarrow{f} & D
\end{array}
\]

It is if binary coproducts are extensive.
Are they pullbacks?

An Oles intersection square \(A \xrightarrow{h} B \) is not a pullback in general.

\[
\begin{array}{c}
A \\
\downarrow k \\
C
\end{array}
\quad
\begin{array}{c}
B \\
\uparrow g \\
D
\end{array}
\]

It is if binary coproducts are extensive.

If there exists a \(C \)-morphism \(D \to A \) it’s an \textbf{absolute} pullback in \(C \).

Proved by Trnková for \(C = \textbf{Set} \).
Are they pullbacks?

An Oles intersection square \[
\begin{array}{c}
A & \xrightarrow{h} & B \\
\downarrow{k} & & \downarrow{g} \\
C & \xrightarrow{f} & D
\end{array}
\]
is not a pullback in general.

It is if binary coproducts are extensive.

If there exists a \(C\)-morphism \(D \rightarrow A\) it’s an absolute pullback in \(C\).

Proved by Trnková for \(C = \text{Set}\).

It’s also a pullback in \(\text{Oles}(C)\), provided \(- + Y\) preserves pullbacks.
Properties of disjointness

The cocone $A_0 \rightarrow \cdots \rightarrow A_{n-1}$ in $n-1 \leftarrow \cdots \leftarrow \sum_{i<n} A_i$ is pairwise disjoint.

For any pairwise disjoint cocone $A_0 \downarrow \cdots \downarrow A_{n-1}$ there's a unique Oles embedding $\sum_{i<n} A_i \rightarrow B$ that's a morphism of cocones.
Properties of disjointness

The cocone

\[\sum_{i < n} A_i \]

is pairwise disjoint.

For any pairwise disjoint cocone

\[\sum_{i < n} A_i \to B \]

there’s a unique Oles embedding \(\sum_{i < n} A_i \to B \) that’s a morphism of cocones.
Covering intersection squares

Given two Oles intersection squares

If the inner one is covering then there is a unique Oles embedding $D \hookrightarrow E$ that's a morphism of cocones.
Given two Oles intersection squares

if the inner one is **covering** then there is a unique Oles embedding $D \hookrightarrow E$ that’s a morphism of cocones.

This may be generalized to other diagram shapes.
A monad T on a category \mathcal{D} gives a comonad $F^T U^T$ on the Eilenberg-Moore category C^T.
A monad T on a category \mathcal{D} gives a comonad $F^T U^T$ on the Eilenberg-Moore category \mathcal{C}^T.

A coalgebra for this comonad is called a T-base. Lack, Taylor, Jacobs . . .

This consists of an object P and maps $\theta : TP \rightarrow P$ and $\phi : P \rightarrow TP$, satisfying 5 equations, of which 2 are redundant.
A monoidal action of a symmetric monoidal category \((\mathcal{C}, I, \otimes)\) on a category \(\mathcal{D}\) is a map \(\otimes : \mathcal{D} \times \mathcal{C} \rightarrow \mathcal{D}\) and isomorphisms

\[
P \otimes (B \otimes C) \cong (P \otimes B) \otimes C
\]

\[
P \otimes I \cong P
\]

satisfying the pentagon and the triangle.
Suppose \mathcal{C} has binary coproducts and an initial object, and acts monoidally on \mathcal{D}. Any A in \mathcal{C} gives a monad $P \mapsto P \otimes A$ on \mathcal{D}. A base structure on P for this monad is called an Oles embedding $A \hookrightarrow P$. We can compose Oles embeddings $A \hookrightarrow B \hookrightarrow P$ and speak of disjoint embeddings and intersection squares into P.
Suppose \mathcal{C} has binary coproducts and an initial object, and acts monoidally on \mathcal{D}.

Any A in \mathcal{C} gives a monad $P \mapsto P \otimes A$ on \mathcal{D}.

A base structure on P for this monad is called an **Oles embedding** $A \hookrightarrow P$.

We can compose Oles embeddings

$$A \hookrightarrow B \hookrightarrow P$$

and speak of disjoint embeddings and intersection squares into P.
Oles embeddings in a category

C acts monoidally on itself.

This gives Oles embeddings in C.
Examples

Oles embeddings in a category

\(\mathcal{C} \) acts monoidally on itself.

This gives Oles embeddings in \(\mathcal{C} \).

Lookup/update algebras

\(\text{Set}^{\text{op}} \) acts monoidally on \(\text{Set} \) via exponentiation.

An Oles embedding from \(A \hookrightarrow P \) is a lookup/update algebra structure on \(P \),

shown by Plotkin and Power to be an algebra for the state monad \(X \mapsto A \to (A \times X) \).
Handling exceptions and reading

Let \textbf{MonadSet} be the category of monads on \textbf{Set}.

- \textbf{Set} acts on \textbf{MonadSet} via

\[
(T \otimes E)X = T(X + E)
\]
Handling exceptions and reading

Let \textbf{MonadSet} be the category of monads on \textbf{Set}.

- \textbf{Set} acts on \textbf{MonadSet} via
 \[(T \otimes E)X = T(X + E)\]

- \textbf{Set}^{op} acts on \textbf{MonadSet} via
 \[(T \otimes S)X = S \to TX\]
Handling exceptions and reading

Let MonadSet be the category of monads on Set.

- Set acts on MonadSet via

\[(T \otimes E)X = T(X + E)\]

- Set^{op} acts on MonadSet via

\[(T \otimes S)X = S \to TX\]

- $\text{Set}^{\text{op}} \times \text{Set}$ acts on MonadSet via

\[(T \otimes (S, E))X = S \to T(X + E)\]
Handling exceptions and reading

Let **MonadSet** be the category of monads on **Set**.

- **Set** acts on **MonadSet** via
 \[(T \otimes E)X = T(X + E)\]

- **Set^{op}** acts on **MonadSet** via
 \[(T \otimes S)X = S \rightarrow TX\]

- **Set^{op} \times Set** acts on **MonadSet** via
 \[(T \otimes (S, E))X = S \rightarrow T(X + E)\]

An Oles embedding \((S, E) \hookrightarrow T\)
says how **T** models effect handling for reading and exceptions.
Handling exceptions and reading

Let MonadSet be the category of monads on Set.

- Set acts on MonadSet via
 \[(T \odot E)X = T(X + E)\]

- Set^{op} acts on MonadSet via
 \[(T \odot S)X = S \rightarrow TX\]

- $\text{Set}^{\text{op}} \times \text{Set}$ acts on MonadSet via
 \[(T \odot (S, E))X = S \rightarrow T(X + E)\]

An Oles embedding $(S, E) \hookrightarrow T$ says how T models effect handling for reading and exceptions.

There's a variant for I/O effect handling using the Hyland-Plotkin-Power monad formula $X \hookrightarrow \mu Y. T(X + HY)$
In a category

- Oles embeddings and their complements
- Oles expansions and their quotients
- Oles intersections
- Covering Oles intersections are initial.
Summary

In a category
- Oles embeddings and their complements
- Oles expansions and their quotients
- Oles intersections
- Covering Oles intersections are initial.

Oles embeddings across an action includes many structures of interest.